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We investigate both continuous �second-order� and discontinuous �first-order� transitions to macroscopic
synchronization within a single class of discrete, stochastic �globally� phase-coupled oscillators. We provide
analytical and numerical evidence that the continuity of the transition depends on the coupling coefficients and,
in some nonuniform populations, on the degree of quenched disorder. Hence, in a relatively simple setting this
class of models exhibits the qualitative behaviors characteristic of a variety of considerably more complicated
models. In addition, we study the microscopic basis of synchronization above threshold and detail the coun-
terintuitive subtleties relating measurements of time-averaged frequencies and mean-field oscillations. Most
notably, we observe a state of suprathreshold partial synchronization in which time-averaged frequency mea-
surements from individual oscillators do not correspond to the frequency of macroscopic oscillations observed
in the population.
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I. INTRODUCTION

A great number of physical systems consist of individual
entities with periodic, or nearly periodic, dynamics. Ranging
from collections of chemical consitutents to groups of social
entities—for example, applauding individuals whose clap-
ping is repetitive—these systems serve as a battleground of
sorts for the competition between the dynamics of individual
constituents and the large-scale cooperation favored in many
cases by the nature of their mutual interactions. Owing to the
ubiquity and certainly, in part, to the dramatic nature of the
emergent synchronized behavior in such naturally oscillating
settings, the subject has been intensely studied in the physics
literature for several decades, with the Kuramoto oscillator
and its kin serving as prototypical models on which many
studies are based �1–4�.

Recently, a simple class of models of macroscopic syn-
chronization has provided a number of additional insights
into the large-scale phenomena occuring in noisy discrete
coupled oscillators, including detailed characterizations of
both the universal critical behavior of the continuous phase
transition �5,6� as well as the effects of spatial disorder in
such populations �7�. While retaining many qualitative char-
acteristics of more complex models, the discrete oscillators
remain sufficiently simple to provide results unattainable in
most of the paradigmatic settings.

In this paper, we generalize our class of stochastic, dis-
crete oscillator models and detail its use in a variety of new
contexts. By generalizing the form of the interoscillator cou-
pling, we show that our class of mean-field models encom-
passes oscillators which can undergo either supercritical or
subcritical Hopf bifurcations, depending on the microscopic
specifics of the coupling. In addition, we study dichoto-
mously disordered populations of oscillators and show that
the bifurcation can be either supercritical or subcritical de-

pending on the degree of disorder in the population. Such
behaviors are reminiscent of a number of significantly more
complex oscillator models �8–14�, including Daido’s gener-
alized Kuramoto oscillators �15�, where either disorder or
microscopic coupling specifics can alter the nature �continu-
ous or discontinuous� of the transition. However, our model
provides a far simpler setting for observing both continuous
and discontinuous transitions to synchronization.

In addition, we study the microscopic underpinnings of
synchronization above threshold. In particular, we look at the
time-averaged frequency and its relationship to phase syn-
chronization above threshold �which turns out to be interest-
ingly counterintuitive�. Again, we do this for a specific
model from our general class �for both single and dichoto-
mously disordered populations�, but we expect the results to
hold for our entire class of models undergoing a Hopf bifur-
cation. This is somewhat similar to the partial synchroniza-
tion seen in other models �18�, but again, our model is sim-
pler and, perhaps, more transparent.

In Sec. II we present our model and highlight its essential
parameters. Here we note that for systems of oscillators with
identical transition rates between states the control parameter
for the phase transition is the coupling strength among oscil-
lators; when the array includes oscillators with different tran-
sition rates, the degree of disorder is also a control parameter.
In Sec. III we show that depending on the values of micro-
scopic parameters, this model can exhibit both subcritical �or
first-order� and supercritical �or second-order� phase transi-
tions as a function of the coupling strength and also as a
function of the degree of disorder. Section IV deals with the
microscopic underpinnings of the synchronization phenom-
enon and the connection between phase synchronization and
frequency entrainment in our system. Section V presents a
summary and further discussion of our results.
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II. MODEL

In this section we present our model in some detail, re-
peating some of our early presentations �5–7� because of
important �albeit simple� generalizations of the model. We
begin by considering a stochastic three-state model governed
by transition rates g �see Fig. 1�, where each state may be
interpreted as a discrete phase �5–7�. Because the transitions
among states are unidirectional and do not conform to deter-
ministic rate laws, the model retains a qualitative link with a
noisy phase oscillator. The linear evolution equation of a
single oscillator is �P�t� /�t=MP�t�, where the components
Pi�t� of the column vector P�t�= (P1�t�P2�t�P3�t�)T �T de-
notes the transpose� are the probabilities of being in states i
at time t, where i=1, 2, 3 and

M = �− g 0 g

g − g 0

0 g − g
� . �1�

The system reaches a steady state for P1
*= P2

*= P3
*=1/3. The

oscillator’s periodicity, as contained in the time scale of the
cycle i=1→2→3→1→¯, is determined by g; that is, the
time evolution of our simple model qualitatively resembles
that of the discretized phase of a generic noisy oscillator with
the intrinsic eigenfrequency set by the value of g.

To study interacting arrays of these oscillators, we couple
individual units by allowing the transition rates of each unit
to depend on the states of the units to which it is connected.
Specifically, for N identical units we choose the transition
rate of a unit � from state i to state i+1 as

gi = g exp�a�UNi+1 + VNi−1 + WNi�
n

� , �2�

where i=1, 2, 3 and i+1=1 when i=3, a is the coupling
parameter, g is the transition rate parameter, n is the number
of oscillators to which unit � is coupled, and Nk is the num-
ber of units among the n that are in state k. We introduce the
real constants U, V, and W to encompass in a general way
our two previous coupling functions �5–7�. Each unit may
thus transition to the state ahead or remain in its current
state, and the propensity for such a change depends on the
states of its nearest neighbors. In our earlier works we con-
sidered the globally coupled system, n=N−1, and also
nearest-neighbor coupling in square, cubic, or hypercubic ar-

rays, n=2d �d=dimensionality�. Here we focus on globally
coupled arrays.

For a population of N→� identical units in the mean-
field �globally coupled� version of this model we can replace
Nk /N with the probability Pk, thereby arriving at a nonlinear
equation for the mean-field probability, �P�t� /�t
=M�P�t��P�t�, with

M�P�t�� = �− g1 0 g3

g1 − g2 0

0 g2 − g3
� . �3�

Normalization allows us to eliminate P3�t� and obtain a
closed set of equations for P1�t� and P2�t�. We can then
linearize about the fixed point �P1

* , P2
*�= �1/3 ,1 /3�, yielding

a Jacobian A�a ,g ,U ,V ,W� with a set of complex conjugate
eigenvalues which determine the stability of this asynchro-
nous state. Specifically, we find that

�± = C	− 9 + 3a�UW ± i
3�3 + a�U + W − 2V��� , �4�

where C�gea�U+V+W�/3 /6 is a nonzero constant for all finite
U, V, and W and we introduce the abbreviation �mn�m−n.
The eigenvalues cross the imaginary axis at ac=3/�UW,
yielding

�±
* = ± i��U,V,W� , �5�

with

��U,V,W� � g
3ea�U+V+W�/�UW
�UV

�UW
. �6�

For �UW�0 and ��U ,V ,W��0 �that is, �UV�0�, ac repre-
sents a Hopf bifurcation point, indicating the emergence of
macroscopic oscillations indicative of synchronization. Fur-
thermore, we require that �UW�0 to ensure that the bifurca-
tion happens at a positive value of a. We note that in previ-
ous studies we have used �U ,V ,W�= �1,−1,0�, yielding ac

=3 and �=2g
3 �7�, and �U ,V ,W�= �1,0 ,−1�, yielding ac

=1.5 and �=g
3/2 �5,6�. In addition, we stress that while a
range of models may prove useful for exploring the phase
transition behavior near threshold �see, for example, �5,6��,
only models with W=0 provide physically appealing charac-
teristics far above threshold �see, for example, �7��. Specifi-
cally, only for W=0 does the frequency of a perfectly syn-
chronized set of oscillators maintain a nonzero finite value
�g�. Below we explore in more detail the nature of the Hopf
bifurcation associated with the class of models described by
the permitted values �U ,V ,W�.

In addition to the single-population case, we consider glo-
bally coupled arrays of oscillators that can have one of N
�N different transition rate parameters, g=	u, u=1, . . . ,N.
As detailed in �7�, the probability vector is now 3N dimen-
sional, P�t�= �P1,	1

P2,	1
P3,	1

¯P1,	N
P2,	N

P3,	N
�T, and the

added subscript on the components of P�t� keeps track of the
transition rate parameter. Explicitly, the component Pi,	u

is
the probability that a unit with transition rate parameter g
=	u is in state i. The evolution of the probability vector is
given by the set of coupled nonlinear differential equations
�P�t� /�t=MN�P�t��P�t�, with

FIG. 1. Three-state unit with transition rates g.
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MN�P�t�� =�
M	1

0 ¯ 0

0 M	2
¯ 0

   

0 ¯ 0 M	N

� . �7�

Here

M	u
= �− g1�	u� 0 g3�	u�

g1�	u� − g2�	u� 0

0 g2�	u� − g3�	u�
� �8�

and

gi�	u� = 	u exp�a�
k=1

N


�	k��UPi+1,	k
+ VPi−1,	k

+ WPi,	k
�� .

�9�

The function 
�	k� is the fraction of units which have a
transition rate parameter g=	k.

Because it closely appeals to physical intuition �7� for
oscillators far above threshold, we limit ourselves to the case
�U ,V ,W�= �1,−1,0� for dichotomously disordered oscilla-
tors. We further limit our focus here to uniform distributions

�	k�=1/N, but note that relaxing this constraint has been
shown to preserve the qualitative features of the model �7�.
For uniform distributions and �U ,V ,W�= �1,−1,0�, probabil-
ity normalization again allows us to reduce this to a system
of 2N coupled ordinary differential equations. We can then
linearize about the disordered state P�t�= �1/3 ,1 /3 , . . . ,
1 /3�T and arrive at a 2N�2N Jacobian parametrized by a
collection of N transition rate parameters 	i and a coupling
strength a.

While it has been shown that the qualitative essence of the
model remains similar for N=2,3 ,4 and even for com-
pletely disordered populations �7�, we focus here only on the
simple dichotomously disordered case N=2. As shown in
�7�, the four eigenvalues ��+ ,�+

* ,�− ,�−
*� of the corresponding

Jacobian are given by

Re �±

	1 + 	2
=

1

8
	a − 6 ± B�a,��cos�C�a,���� ,

Im �±

	1 + 	2
=

1

8
	
3�a + 2� ± B�a,��sin�C�a,���� , �10�

where

B�a,�� � 
2�a4 − 6a2�2 + 3�4�a2 + 3��1/4,

C�a,�� �
1

2
tan−1�− 
3�a2 − �a + 3��2�

a2 + 3�a − 1��2 � , �11�

and

� �
2�	1 − 	2�
�	1 + 	2�

. �12�

Aside from an overall factor �	1+	2�, Eqs. �10� depend only
on the relative width variable �, and therefore the critical

coupling ac—that is, the value of a at which
Re �+=0—depends only on �. As Re �− does not vanish for
any a, ac corresponds to a Hopf bifurcation and our N=2
model exhibits macroscopic oscillations indicative of large-
scale cooperation. We note that ac increases with increasing
�, indicating that a stronger coupling is necessary to over-
come increasingly different values of 	1 and 	2.

In what follows, we make use of the synchrony order
parameter r to characterize the emergence of phase syn-
chrony �17�. This parameter is defined as

r = �R�, R �
1

N
��

j=1

N

eij� . �13�

Here  is a discrete phase, taken to be 2��k−1� /3 for state
k� 	1,2 ,3� at site j. The brackets represent an average over
time in the steady state and an average over all independent
trials. Therefore, r serves as a measure of phase synchroni-
zation.

III. CONTINUOUS AND DISCONTINUOUS TRANSITIONS
TO SYNCHRONY

In the mean-field limit, the order of the phase transition to
synchrony is closely tied to the nature of the Hopf bifurca-
tion. Specifically, a subcritical Hopf bifurcation corresponds
to a discontinuous �sometimes called first-order� phase tran-
sition, while a supercritical Hopf bifurcation indicates a con-
tinuous �second-order� transition. As such, we place special
emphasis in this paper on the sign of l1, the first Lyapunov
coefficient, which provides information on the nature of the
Hopf bifurcation and, by extension, on the order of the phase
transition.

In general, l1 can be calculated using the projection tech-
nique given in �16�, which relies on a multivariate Taylor
expansion of the vector field describing the dynamics in
question about an equilibrium point. For a general
n-dimensional dynamical system ẋ= f�x ,�� with an equilib-
rium point x=xH undergoing a Hopf bifurcation at parameter
value �=�H, l1 is given by �16�

l1 =
1

2�
Re��p,C�q,q, q̄�� − 2�p,B„q,A−1B�q, q̄�…�

+ �p,B„q̄,�2i�I − A�−1B�q,q�…�� , �14�

where �· , · � is the typical complex scalar product, I is the
identity matrix, and p and q are right and left eigenvectors of
the Jacobian A= � �f

�x �x=xH given by

Aq = i�q ,

ATp = − i�p . �15�

Furthermore, p is chosen so that �p ,q�=1, and B�u ,v� and
C�u ,v ,w� are multilinear, n-dimensional vector functions
corresponding to the lowest-order nonlinear coefficients in
the Taylor expansion of the vector field. That is,

B�u,v� = �
j,k=1

n � �2f��,�H�
�� j � �k

�
�=xH

ujvk,
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C�u,v,w� = �
j,k,l=1

n � �3f��,�H�
�� j � �k � �l

�
�=xH

ujvkwl, �16�

with xH indicating the equilibrium point of the vector field
around which we expand and �H the bifurcation parameter �
evaluated at the bifurcation point.

A. Continuous and discontinuous transitions in a single
population of identical oscillators

For the case of a single population of oscillators described
by Eqs. �2� and �3�, l1 can be analytically calculated using
the technique outlined above. Specifically, we set g=1 �with-
out loss of generality� and consider the equilibrium point P
= �1/3 ,1 /3� at �H�ac and find q and p to be

q = �−
1

2
+

i
3

2
,1� ,

p = � i − 
3

3i + 
3
,

2i

3i + 
3
� , �17�

independent of U, V, and W. Then, calculating the multivari-
able functions B�u ,v� and C�u ,v ,w� with Eq. �16� and using
� as defined in Eq. �6� along with Eqs. �14� and �17�, we find
after simplification that

l1 = −
9
3�U + V − 2W�

4�UW
. �18�

As a result, the nature of the Hopf bifurcation depends on the
choices U, V, and W. Specifically, if we assume U�V, we
have

l1 � 0 for W �
U + V

2
,

l1 � 0 for W �
U + V

2
. �19�

A similar result holds for U�V, but we shall here restrict
ourselves to the intuitively reasonable models positing U
�0 and V�0; that is, the oscillators one state ahead of the
one in question can only increase �or not affect� the transition
rate and those behind can only decrease �or not affect� the
transition rate. To verify these predictions, we show numeri-
cal solutions to the mean-field equations in Fig. 2; the top
panel represents an example in the subcritical regime
��U ,V ,W�= �1,−2,0�� while the bottom panel shows an ex-
ample in the supercritical regime ��U ,V ,W�= �2,−1,0��. A
clear distinction can be made in the neighborhood of the
critical point. We also note that the continuous transition is
characterized by the classical mean-field exponent �=1/2.

We further observe that the choice �U ,V ,W�= �1,0 ,−1�
leads to l1=−27
3/4�−11.69, indicating a supercritical
Hopf bifurcation and rendering the model applicable to stud-
ies of continuous phase transitions �5,6�. With universality in
mind, we stress that any choice of parameters �U ,V ,W�
yielding a supercritical bifurcation should show similar criti-

cal behavior. On the other hand, the choice �U ,V ,W�= �1,
−1,0�, while physically appealing above threshold, falls at a
singular point separating the subcritical and supercritical
cases �l1=0�. The flexibility inherent in the choice of coeffi-
cients U, V, and W speaks to the richness of our generic
three-state oscillator and highlights its utility in studying
synchronization in both supercritical �see �5,6�� and subcriti-
cal regimes. We proceed to study the model in the presence
of dichotomous disorder and show that, for a given choice
�U ,V ,W�, the level of disorder can also alter the nature of
the Hopf bifurcation and hence the order of the phase tran-
sition. We select the physically appealing choice �1,−1,0�
and, while the behavior near the critical point may depend in
some sense on this choice, we stress that our overarching
goal remains unhindered. That is, we are able to provide an
example indicating that disorder alone can affect the nature
of the transition. The ubiquity of this phenomenon across the
entire range of models remains an open question for future
work, though we note that similar results are observed for all
parameter choices mentioned in this paper.

B. Continuous and discontinuous transitions
in a dichotomously disordered population

Interestingly, the dichotomously disordered system corre-
sponding to Eqs. �7�–�9� with N=2 and �U ,V ,W�= �1,
−1,0� can undergo either a subcritical or supercritical bifur-
cation depending on the value of � characterizing the indi-
vidual transition rates. The transition to synchrony occurs at
a single value of the coupling ac��� dependent on the rela-
tive width parameter �7�. As such, a and � are not truly

2.9 2.95 3 3.05 3.1
0

0.2

0.4

a

r

1.4 1.45 1.5 1.55 1.6 1.65 1.7
0

0.2

0.4

0.6

a

r

−6 −5 −4

−3

−2

−1

ln(a−a
c
)

ln
r

FIG. 2. �Color online� In a single population of globally coupled
oscillators, two physically distinct Hopf transitions can be observed
depending on the choices of U, V, and W. The top panel shows the
synchronization order parameter r as a function of the coupling
strength a for �U ,V ,W�= �1,−2,0� and clearly shows characteris-
tics of a discontinuous transition, including hysteresis. Squares rep-
resent solutions starting from ordered �mostly synchronized� initial
conditions, while circles represent solutions starting from disor-
dered �random� initial conditions. The bottom panel shows the order
parameter as a function of coupling strength for �U ,V ,W�= �2,
−1,0� and displays a continuous transition with critical exponent �
given by the classical value 1/2. The inset shows a log-log plot near
the critical point. For comparison, a dashed line with a slope of 1/2
is shown along with the order parameter curve �solid line� to verify
this scaling relation.
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independent parameters and we can in principle eliminate a
and consider � to be the bifurcation parameter of interest.
Then, using the machinery of Eqs. �14�–�16�, it is a straight-
forward but tedious exercise to numerically evaluate the first
Lyapunov coefficient l1��� corresponding to the Hopf bifur-
cation occurring at (� ,a���). As shown in Fig. 3, the sign of
l1 varies depending on the relative width parameter �which in
turn determines the critical coupling ac�. Hence, the phase
transition to synchrony can appear continuous or discontinu-
ous depending on the relative difference between the transi-
tion rate parameters in the two populations.

To verify these predictions, we solve the mean-field equa-
tions numerically in both the subcritical ��=3/4� and super-
critical ��=7/4� regimes. In the former case, we consider
the case 	1=2.5, 	2=5.5. Figure 4 clearly indicates that the
transition to synchrony is marked by a discontinuous change
in the order parameter r as a eclipses ac�3.55. In addition,
a small region of marked hysteresis appears just below
threshold. Remarkably, this indicates that a stable disordered
solution coexists with a stable, synchronized solution �the
stable limit cycle� just before threshold.

By contrast, the case �=7/4 corresponds to a supercriti-
cal Hopf bifurcation reminiscent of a continuous phase tran-
sition. As shown in Fig. 5, the transition is characterized by a
continuously increasing order parameter; no hysteresis is evi-
dent. We note also that the order parameter displays a power
law increase near the onset of the bifurcation marked by the
mean-field critical exponent �=1/2. This is expected both
from the Hopf bifurcation theorem, which prescribes the �a
−ac�1/2 dependence of the limit cycle radius �closely related
to r, the order parameter� near the onset of synchrony, and
also because of the analogy with phase transitions in an
infinite-dimensional space �see �5,6��.

Interestingly, these results indicate that the degree of spa-
tial disorder may fundamentally alter the nature of the phase
transition to synchrony. In both the subcritical and supercriti-
cal cases, synchronization is marked by the destabilization of
the nonsynchronous state at a single value of ac, giving rise
to emergent oscillations in a macroscopic variable �for ex-
ample, P1,	i

�t��. Hence, both cases retain the qualitative fea-
tures of synchronization in disordered populations discussed
in our previous work �7�; however, the details of the onset of
such cooperation distinguish the two cases.

IV. MICROSCOPIC UNDERPINNINGS
OF SYNCHRONIZATION

Having detailed two distinct mechanisms by which syn-
chronization might arise, we now explore in detail the mi-
croscopic subtleties underlying synchronization above
threshold. As detailed in �5–7� and mentioned above, syn-
chronization occurs in the mean-field limit via the destabili-
zation of a nonsynchronous fixed point. Specifically, a single

0 0.5 1 1.5 2
Μ

0

0.1

l1

FIG. 3. The first Lyapunov coefficient l1 as a function of the
relative width parameter � is shown for Hopf bifurcations taking
place at �H= (ac��� ,�). The bifurcation can be either subcritical or
supercritical depending on the relative width variable.

3.51 3.52 3.53 3.54 3.55 3.56 3.57 3.58
0

0.1

0.2

0.3

0.4

0.5

a

r

FIG. 4. �Color online� Order parameter r as a function of the
coupling strength a. A subcritical Hopf bifurcation occurs for �
=3/4. Squares represent solutions starting from ordered �mostly
synchronized� initial conditions, while circles represent solutions
starting from disordered �random� initial conditions. Dark �blue�
points correspond to population 1, 	1=2.5, and light �pink� points
to population 2, 	2=5.5. The transition is clearly discontinuous as a
crosses ac�3.55. In addition, a region of multistability and corre-
sponding hysteresis exists just below threshold.

5.2 5.3 5.4 5.5 5.6 5.7 5.8
0

0.1

0.2

0.3

0.4

0.5

a

r

−4.5 −4 −3.5 −3

−4

−2

ln(a−a
c
)

ln
(r

)

Slope = 1/2

FIG. 5. �Color online� Order parameter r vs coupling strength a.
A supercritical Hopf bifurcation occurs for �=7/4. Squares repre-
sent solutions starting from an ordered �mostly synchronized� initial
condition, while circles represent solutions starting from a disor-
dered �random� initial condition �repetition with other ordered and
disordered initial conditions leads to essentially the same results�.
Dark �blue� points correspond to population 1, 	1=0.25, and light
�pink� points to population 2, 	2=3.75. The transition is clearly
continuous as a crosses ac�5.44, and there is a noticeable absence
of hysteresis. Dotted line is drawn to guide the eye. The inset indi-
cates that, in the neighborhood of the critical point, the order pa-
rameter follows power law behavior with the correct mean-field
critical exponent ��=1/2�.
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pair of complex conjugate eigenvalues corresponding to the
linearized fixed point cross the imaginary axis at ac, giving
rise to stable oscillations in the macroscopic variables char-
acterizing the system �in our case, the components of P�t��.
While the onset of this behavior is dependent on the choice
�U ,V ,W� and also the magnitude of disorder within the sys-
tem �Sec. III�, the qualitative features of the synchronized
state remain identical above threshold in both the subcritical
and supercritical case. Hence, we limit our attention to sev-
eral illustrative cases, but note that our results hold also for
the supercritical case �and in fact the entire range of ��.
Specifically, in what follows, we take �U ,V ,W�= �1,−1,0�
and consider a single population as well as a dichotomously
disordered population with �=3/4.

In particular, the threshold ac is marked by the onset of
coherent temporal oscillations in the components of P�t�. We
characterize the microscopic underpinnings of these oscilla-
tions by considering �̄i, the time-averaged frequency of os-
cillator i in the steady state. We perform simulations on glo-
bally coupled lattices of N=3500 units of a single population
with 	=1 and also of a dichotomously disordered population
with 	1=2.5 and 	2=5.5. As shown in Figs. 6 and 7, the
distribution of frequencies �̄i clusters around the values pre-
scribed by 	 �or 	1 and 	2 for populations 1 and 2, respec-
tively� far below threshold �top panels�. Specifically, for a
deterministic oscillator with transition rate 	, �̄i is given by
2�	 /3; when 	=1 �or 	1=2.5 and 	2=5.5�, this gives the
central peak of the histogram for the relevant population. We
compare these histograms with the power spectra

�P̃1,	i
���P̃1,	i

* ����1/2, where P̃1,	i
��� is the Fourier transform

of P1,	i
�t�. As threshold is eclipsed �middle panels�, a peak

arises in the power spectrum of the macroscopic variables
P1,	i

, though the frequency of this peak does not correspond
with the individual �̄i’s of oscillators constituting the popu-
lation. In the dichotomous case, this peak only roughly cor-
responds with the time-averaged frequencies from popula-
tion 2 and completely exceeds even the maximum �̄i

characterizing population 1. As a is further increased, the
descrepency between the time-averaged frequency histo-
grams and the macroscopic oscillation frequencies decreases.
In addition, in the disordered case, the histograms for the two
populations become increasingly narrow and closer to one
another �bottom panel�. We note that as a becomes tremen-
dously large, the histograms become extremely narrow and
begin to overlap at a frequency determined by the frequency
of the macroscopic oscillations, as expected �indicative of
perfect synchronization�. Nonetheless, the behavior for finite,
intermediate a is rather counterintuitive and points to a rich
microscopic dynamics underlying the cooperative behavior.

To further explore these trends, we consider the stochastic
variable T1 step, the waiting time in a single state for an in-
dividual oscillator. T1 step represents the time the oscillator
spends in a single state i before transitioning to the subse-
quent state i+1. For computational efficiency, we record
T1 step for a representative subpopulation of 60 units �30
units from each population, 1 and 2, in the disordered case�.
Figures 8 and 9 show histograms of the variable T1 step taken
over this representative subpopulation once steady state was
reached. Clearly, all relevant subpopulations consist of oscil-
lators whose steps most often correspond to the frequency of
the macroscopic oscillation �shown by the solid vertical
line�. That is, the peak of the histograms occur at a value T
comensurate with the frequency peak in the power spectrum
of the components of P�t�. However, Fig. 8 shows that the
distribution of T1 step is bimodal, with a significant peak oc-
curing at T1 step�2.2 which downward biases the time-
averaged frequencies �i of individual units. We note that as
coupling a increases significantly above threshold, the distri-
bution becomes unimodal with a peak at T1 step correspond-
ing to the frequency of macroscopic oscillation. In the disor-

1 2 3 4 5 6

500

1000

1 2 3 4 5 6
0

500

C
ou

nt
s

1 2 3 4 5 6
−0.4

0.2

P
(ω

)

1 2 3 4 5 6
0

500

1000

1 2 3 4 5 6
−0.4

0.2

ω

1 2 3 4 5 6
−0.4

0.2

FIG. 6. �Color online� Each plot shows a histogram of time-
averaged frequencies �in the steady state�, where the vertical axis
represents the number of units �out of N=3500 total units� having
the frequency �̄. The power spectrum of P1,	1

overlays each histo-
gram. The top panel is below synchronization threshold �a=2.65�,
while the middle �a=3.05� and lower panels �a=3.45� are both
above threshold.

4 6 8 10 12 14 16
0

500

1000

4 6 8 10 12 14 16

0

0.20

8 10 12 14 16 18 20 22
0

500

1000

C
ou

nt
s

0

0.2

P
(ω

)

10 12 14 16 18 20 22
0

500

1000

10 12 14 16 18 20 22

0

0.2

ω

FIG. 7. �Color online� Each plot shows a histogram of time-
averaged frequencies �in the steady state�, where the vertical axis
represents the number of units �out of N=3500 total units� having
the frequency �̄. Population 1, characterized by 	1=2.5, is repre-
sented by the dark �blue� histogram, while population 2, character-
ized by 	2=5.5, is represented by the light �pink� one. Power spec-
tra of P1,	1

�dark, blue� and P1,	2
�light, pink� overlay the

histograms. The top panel is below synchronization threshold �a
=3.20�, while the middle �a=3.60� and lower panels �a=3.86� are
just above threshold. For aesthetic purposes, the horizontal range is
relatively shifted in the three panels.

WOOD et al. PHYSICAL REVIEW E 76, 041132 �2007�

041132-6



dered case, only population one, characterized by
significantly lower time-averaged �̄’s, shows a bimodal dis-
tribution with a significant peak at T1 step�0.45. In fact,
these long waiting times, while not the dominant macro-
scopic behavior, pervade the microscopic dynamics in such a
way that the time-averaged frequencies become downward
biased and no longer accurately represent the macroscopic
dynamics. Interestingly, population 2 has become sufficiently
synchronized that the second peak is effectively nonexistent,
and thus the frequencies overlap more closely with the mac-
roscopic “mean-field” frequency. The right insets of Figs. 8
and 9 show histograms for single units chosen from the
populations �or subpopulations�. Again, the unit chosen from

the single population case shows a bimodal distribution with
significant “anamolous” peaks near T1 step�2.2. In the dis-
ordered case, the unit from population 1 shows a bimodal
waiting time distribution characterized by occasional waiting
times in the neighborhood of T�0.45 in addition to those
corresponding to the macroscopic oscillations. Finally, in
Fig. 10 we show the time evolution of the subpopulations
along with the macroscopic variable P1,	i

for each popula-
tion. At any given time, the majority of oscillators in each
population is synchronized, leading to the smooth oscilla-
tions of the macroscopic variable. However, isolated single
units are prone to long waiting times, particularly in the less
synchronized population �population 1, left panel, in this ex-
ample�. These anamolously long waiting times, which serve
to bias the time averaged frequencies �̄i of each individual
unit, nevertheless do not substantially disrupt the macro-
scopic oscillations, largely because the occurrence of coinci-
dent long waits is fairly uncommon. That is, the long waiting
times do not appear in any significantly correlated way
among individual constituents of the population.

V. DISCUSSION

We have shown that a class of simple, discrete models of
stochastic phase coupled oscillators can undergo either a sub-
critical or supercritical bifurcation to macroscopic syn-
chrony, depending on the chosen form of the microscopic
coupling. As such, the different instances of the model can be
used to study either continuous phase transitions �5,6� or
discontinuous transitions exhibiting hysteresis, a characteris-
tic seen in detailed theoretical models of, e.g., coupled Jo-
sephson junctions �9� but only observed in significantly more
complex coupled oscillator models �8–15�. We stress that
universality suggests that all models in this class exhibiting
continuous phase transitions should show similar behavior
near the critical point, and this served as the basis of our
earlier studies �5,6�. Nevertheless, it is remarkable that minor
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modifications in microscopic coupling can alter the nature of
the bifurcation in such a fundamental way.

In addition, we have shown that in dichotomously disor-
dered populations, both subcritical and supercritical Hopf bi-
furcations can occur, and the distinction is completely deter-
mined by the relative width � characterizing the transition
rate disorder between the two populations. While the quali-
tative features of the transitions within each class �subcritical
and supercritical� appear identical, the distinction between
classes points to fundamentally different mechanisms under-
lying the initial emergence of phase synchronization. In par-
ticular, it is striking that the level of disorder within a popu-
lation, as measured by �, can significantly alter the behavior
near the critical point �though we stress that behavior even
moderately above threshold is qualitatively indistinguish-
able�.

Finally, we have studied the microscopic basis of phase
synchronization above threshold. It is initially counterintui-
tive that phase synchronization, defined in terms of the Hopf
bifurcation and temporal oscillations in the macroscopic
variable P�t� �and measured in the order parameter r�, is not
contingent upon the existence of overlapping distributions of
�̄i. That is, our results regarding the discrete oscillator model
highlight the complexity of microscopic dynamics underly-
ing macroscopic cooperation and point to a potentially mis-
leading subtlety. Whereas phase synchronization is often
considered a stronger condition than frequency
entrainment—defined using an order parameter built upon
the notion that a fraction of units display identical time-
averaged frequencies in the oscillator population—we here
report subtle microscopic features which distinguish the two
without establishing a clear hierarchy. For example, Hong et
al. �17� show that for disordered populations of Kuramoto
oscillators, the lower critical dimension for frequency en-
trainment is lower than that for phase synchronization in
locally coupled oscillators, indicating the relative ease with
which frequency entrainment is achieved. They note that the
two transitions coincide in the case of globally coupled units.
Contrast that with our dichotomously disordered population,
for which phase synchronization occurs without any overlap
in the frequency distributions: that is, no oscillator from
population 1 has the same frequency as any oscillator from
population 2. While a direct comparison is not plausible ow-
ing to the specific differences between models and order pa-
rameters, we stress that any order parameter related to time-
averaged measurements of frequencies would, for our model,
be misleading and provide potentially counterintuitive re-
sults. The emergence of a nonzero r, which measures phase
synchronization, corresponds with the loss of stability of the
asynchronous fixed point �the Hopf bifurcation�. This does
not guarantee similar distributions of time-averaged frequen-
cies in the two populations; in fact, we can readily see that
synchronization occurs while the frequency distributions are
entirely distinct. Furthermore, the frequency of the macro-

scopic oscillations of the mean field does not always coin-
cide with the time-averaged frequencies of the oscillators
constituting the population �or any subpopulation�. Only
when coupling is sufficiently large to substantially reduce the
anamolously long waiting times which bias �̄i will the fre-
quency distributions begin to overlap one another and coin-
cide with the frequency of the mean-field oscillations. Be-
cause these long waiting times appear more readily in the
population with the smaller 	i, the time-averaged frequencies
of the two populations are disproportionately affected, mean-
ing that the populations will appear to behave quite differ-
ently in terms of average frequency. This in fact underlies the
stark differences in the degree of synchronization between
two populations as measured by the order parameter r and
provides an intuitive description capable of explaining this
discrepancy. Our previous results show that completely dis-
ordered populations show qualitative similarities with the di-
chotomously disordered case �7�; hence, we are led to cau-
tiously speculate that wholly disordered populations are also
characterized by waiting times T1 step distributed with long
tails, and hence time-averaged frequencies become down-
wardly biased, meaning that the order parameter for fre-
quency entrainment, in the typical sense, will not accurately
reflect the macroscopic cooperation. Further studies along
these lines are currently in progress.

Finally, the results of this work raise the following ques-
tion: how dependent is the above phenomenon on the choice
of a discrete phase model? Would similarly counterintuitive
results arise in continuous phase oscillators? In fact, a recent
study by Rosenblum and Pikovsky �18� suggests that a simi-
lar �though not identical� state of partial synchronization
arises in continuous oscillators coupled in a highly nonlinear
fashion. Specifically, they find that in globally coupled oscil-
lators, phases exist in which certain subpopulations are char-
acterized by time-averaged frequencies which are not com-
mensurate with the oscillations of the mean field; that is, they
are not locked with the macroscopic oscillations induced in
the population. While once again the differences between the
models make a direct comparison difficult, it is nevertheless
clear that measurements of time-averaged frequencies pro-
vide potentially counterintuitive results, even in globally
coupled arrays. In the case of our stochastic discrete oscilla-
tors, the behavior is quite transparent once viewed in terms
of T1 step, though it is not clear whether a similar mechanism
underlies the phenomenon in the continuous phase model.
Uncovering the relationship between the superthreshold
phase in our model and that in the continuous oscillator
model of �18� remains an open question, but even the super-
ficial similarities between the results motivate continued ef-
forts along these lines.
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